Future Volcanic Eruptions Will Screw With Climate Change. . .

Peter Hess at Inverse

Climate change doesn’t happen in a vacuum. Many factors contribute to it, not the least of which is volcanic activity. And while you probably think of a volcano in terms of the heat produced, the gas and dust it emits actually affect climate change a lot more than you might think.

In a study published Tuesday in Nature Communications, scientists at the National Center for Atmospheric Research report that major volcanic eruptions could cause more disruption to the global climate than they have in the past. By examining the conditions that followed the eruption of the Indonesian volcano Mount Tambora in 1815, the Boulder, Colorado scientists predict what would happen if this type of major eruption occurred in 2085.

The potential alterations to the climate will not be in the Earth’s favor. While the scientists predict that the cooling that will follow a future eruption of that scale would be even more extreme, it will not offset the effects of a warming climate. Furthermore, they predict that the eruption will disrupt the water cycle, decreasing global precipitation.

The effects of a “volcanic winter” occur as the ash and smoke from an eruption obscure rays from the sun, decreasing their ability to heat the Earth. When Mount Tambora erupted in 1815, thousands of people died instantly, and it is considered the most destructive eruption on Earth in 10,000 years. The dust and gas it emitted into the atmosphere altered global climate for a year afterward, which is why 1816 is known as “The Year Without a Summer.” Global temperatures dipped so severely that crops failed, even in places far away from the volcano. Farms in the northern United States suffered frost damage in August, as did farms in Europe. The massive volcanic eruption triggered a global subsistence crisis, which is estimated to have killed an additional 10,000 people.

Using computer climate models, the researchers of the new study concluded that, if an eruption like Mount Tambora’s happens in 2085, the Earth will cool up to 40 percent more than the 1815 eruption, assuming current rates of climate change continue. However, they also predict that the cooling will be spread out over several years.

The reason the temperature change will so drawn out, they explain, is because ocean temperature is becoming increasingly stratified — that is, separated into layers based on temperature. As this happens, the surface water in the ocean will be increasingly less able to moderate the cooling effects of the eruption, causing a longer and more severe cooling event. Because the cooling in 1815-1816 occurred at a time when ocean temperature was not as stratified, it was absorbed to some degree by the water.

Read the rest of the article HERE.

Advertisements

Solar minimums may be final piece of puzzle in fall of Western Civilisation

Sam Khoury writing in the Nation

[ooo]

By the 1st century BC, Rome was the most advanced and powerful civilisation on Earth and Romans’ material wealth was skyrocketing. Men and women are increasingly less interested in marriage and no-fault divorce is enacted. Birth rates start to decline below the replacement rate. The citizen soldiers are eventually replaced with professional soldiers who expect compensation and are loyal to the military itself, not the state. As the empire expands in a series of wars of choice it is becomes increasingly multicultural thanks to new citizens from conquered territories. Their loyalty is in question but Rome depends on them as mercenaries to defend the declining state. The government and the military industrial complex replace the private sector as the sole entity responsible for everyone’s well-being. There is moral decay and brutality as Julius Caesar brags about killing one million Gauls. This period could be compared our own world since 1970. By the 400s Rome is being pillaged by Visigoths and Vandals, who ensure it never makes it to the 500s.

However there was something else occurring in the 400s that wasn’t happening in the preceding centuries. Although corruption and immorality were rife, the scientific and historical record shows the climate cooled but, more destructively, it became erratic. Long dry conditions were interrupted by intense deluges. Unseasonal spells of cold weather became the norm. Although solar activity records only date back to the 1600s, these conditions were almost certainly the result of a combination of low solar activity and high volcanic activity – much like the post-medieval warm period that saw solar minimums like the so-called Maunder and Dalton and large volcanic eruptions like the Tambora which, combined with the Dalton, created freezing summers. The result during the 400s was rising food prices, which along with the other factors created deep social dissatisfaction as the economy faltered.

There are proposals on the table to turn the Afghani war over to mercenaries and bring out troops home to a land were middle-class citizens are questioning the role of government and wealth disparity created by robotic and AI technology is growing.  We are becoming more like the Roman Empire, dropping birth rates, fewer marriages, and more debauchery.  Moral decay and fear of the government rampant.  But a significant change in the climate, a highly erratic climate of droughts and floods destroyed the food supply and that was the final blow to the Roman Empire.  Is this or fate?

Enter the monkey in the wrench. After 200 years of healthy solar maximums, solar activity has been plummeting since 2010 and the first solar minimum will hit bottom around 2021. By the 2030s solar physicists now reckon that a grand solar minimum will consume most of the rest of the century. Volcanic activity has also been on the increase and more is expected as eruptions occur most often during solar cycle peaks or at solar minimums. In previous articles published in this newspaper I chronicled increasingly intense and erratic weather patterns that have coincided with the lower solar activity since 2010. The latest include a cold front that descended on the US Midwest in late June dropping temperatures to near freezing, and recent snowfall 200 kilometres south of Moscow in Tarttarastran. Wheat futures immediately rose 6 per cent. At this time the world takes cheap foodstuffs for granted. A change of this reality in the future could shake the global world order to its foundations.

Full Article in HERE.

 

A Cultural History of Climate

I am reading A Cultural History of Climate, by Wolfgang Behringer, after spotting it as one the reference used by Andy May is his Watts Up With That post on Climate and Human Civilization for the Past 4,000 Years. This a fascinating account of climate change’s impact on human history.

From the Amazon Book Review [edited]:

Global warming and the future of the climate is one of the greatest challenges of our time, but what do we know about climate variations 500 years ago, or 5000 years ago? How can we know anything at all about the history of weather? What impact has climate changes had on human prosperity and the spirit of invention?

In this major new book, Wolfgang Behringer introduces us to the latest historical research on the development of the earth’s climate. He focuses above all on the cultural reactions to climate change through the ages, showing how even minor modifications in the environment sometimes resulted in significant social, political and religious upheavals. By examining how our predecessors responded to climate changes, Behringer provides us with a fresh basis for thinking about how we might address the serious climatic challenges we face today.

I was struck by the variability in the climate even during the cold periods, including droughts, floods, extreme heat and cold as reported in the letters, journals, and sermons by those experiencing these conditions. These first-hand reports were chilling when you consider we are on the cusp of the Next Grand Minimum.

Little Ice Age Theory

By James A. Marusek, Retired U.S. Navy Physicist who is warning us of what is to come.

I. Introduction

General Discussion
The sun is undergoing a state change. It is possible that we may be at the cusp of the next Little Ice Age. For several centuries the relationship between periods of quiet sun and a prolonged brutal cold climate on Earth (referred to as Little Ice Ages) have been recognized. But the exact mechanisms behind this relationship have remained a mystery. We exist in an age of scientific enlightenment, equipped with modern tools to measure subtle changes with great precision. Therefore it is important to try and come to grips with these natural climatic drivers and mold the evolution of theories that describe the mechanisms behind Little Ice Ages.

The sun changes over time. There are decadal periods when the sun is very active magnetically, producing many sunspots. These periods are referred to as Solar Grand Maxima. And then there are periods when the sun is very weak producing few sunspot. These periods are called Solar Grand Minima. Solar Grand Minima correspond to dark cold glooming periods called Little Ice Ages. And there are states in-between. During most of the 20th century, the sun was in a Solar Grand Maxima. But that came to an abrupt end beginning in July 2000. The sun produced 6 massive explosions in rapid succession. Each of these explosions produced solar proton events with a proton flux greater than 10,000 pfu @ >10 MeV. These occurred in July 2000, November 2000, September 2001, two in November 2001, and a final one in October 2003. And there hasn’t been any of this magnitude since. Then the sun produced one of the weakest solar minimums since the Ap Index was first recorded (beginning in 1932). The current solar cycle (Solar Cycle 24) is very weak. Not quite weak enough to be called a Solar Grand Minima but very close. It is analogous to a period referred to as a ‘Dalton Minimum’.

As we transitioned from a Grand Solar Maxima, which typified the 20th century to a magnetically quiet solar period similar to a Dalton Minimum (~1798-1823 A.D.), it gave us the opportunity to observe the changes in solar parameters across this transition.

I propose two mechanisms primarily responsible for Little Ice Age climatic conditions. These two components are Cloud Theory and Wind Theory. At the core of Cloud Theory are galactic cosmic rays (GCRs) and at the core of Wind Theory are diamond dust ice crystals. During Little Ice Ages, there is an increase of low level clouds that cause a general global cooling and an alteration of the jet streams that drives cold air from upper latitudes deep into the mid latitude regions.

Little Ice Age conditions are defined not only by colder temperatures but also by a shift in the patterns of wind streams. They produce long-lasting locked wind stream patterns responsible for great floods and great droughts. They also affect the cycle of seasons producing great irregularity and crop failures. Altered wind streams impacts the development of massive storms and hurricanes. These Little Ice Age conditions in the past caused poor crop yields, famines, major epidemics, mass migration, war, and major political upheavals.

Read the full document HERE: Little_Ice_Age_Theory

Be sure to read Appendix A which catalogs the climate extremes during the Maunder Minimum.  We are on the cusp of a Grand Minimum, Dalton or Maunder type, only time will tell.

 

Anasazi America – Done in by Climate Change – Are We Next?

Chaco Culture

Photo by Ellen Steele

In the mid-1970s I was stationed at an Air Force radar site in Holbrook, Arizona. With a family of three young girls, Ellen and I explored the National Parks, Monuments and Reservations in the region. One of the issues that always pricked my intellectual curiosity was why did the Pueblo People leave their cliff houses and where did they go?  We often heard of the Chaco Canyon People, but did not have time to visit the canyon before we left the area.

When we lived in Omaha, Nebraska in the late 1970s we visited the Mesa Verdi ruins, often camping in the National Park gave us lots of time to explore the cliff houses and visitor center, seeking answers to our questions.  After I retired from the Air Force, on our way home to California, we stopped once more to camp at Mesa Verdi, this time with a fourth daughter, almost three years old. Climbing pole ladders to the higher reaches of the cliff houses with a three year old under one arm was a challenge.

Our oldest daughter, a sophomore in high school, was so impressed with the Pueblo Culture she decided to study Anthropology when she graduated from high school. Years later she graduated from UC Davis with a degree in Anthropology, after spending a year in England studying Archaeology.

We often discussed the plight of the Pueblo People of the Southwest and concluded that the climate may have played a role in the migration of the Anasazi from Chaco Canyon, and eventually from the cliff house communities through out southwest.

After I retired, Ellen and I put a visit to Chaco Culture National Historical Park on our bucket list.  In the spring of 2013 we made the long trek to the Canyon, only to be disappointed by the lack of artifacts and information at the visitors center. We were told the artifacts were in the Maxwell Museum in Albuquerque, New Mexico. We did, however, take the opportunity to explore the great houses and the ruins at the Park.  Again, we came away with more questions then answers.

Continue reading “Anasazi America – Done in by Climate Change – Are We Next?”