Weak Solar Activity And La Nina Forebode Cooling Temperatures For The Months Ahead

By P Gosselin on 13. December 2017

The Sun in November 2017

By Frank Bosse and Prof. Fritz Vahrenholt
(Translated and edited by P Gosselin)

In November the sun was unusually quiet with respect to activity. The observed sunspot number (SSN) was merely 5.7, which is only 14% of what is typically normal for month number 108 into the cycle. The current cycle number 24 began in December 2008. The sun was completely spotless 19 of 30 days in November.

At the end of the month some activity appeared, but only at a very low level. The following chart depicts the current cycle’s activity:

solar_acrivity
Figure 1: The monthly SSN values for the current solar cycle 24 (red) 108 months into the cycle, the curve for the mean of the previous 23 cycles (blue), and the similar solar cycle number 5 (black). Enlarged

The next chart shows a comparison of all observed solar cycles thus far:

Solar_activity2
Figure 2: The monthly accumulated anomalies of the cycles up to 108 months into the cycle. Cycle number 24 has taken third place for the most inactive. Enlarged

Icecap Note: The ability with today’s advanced technology to see the smallest spots or pores probably inflates the number of spots and diminishes the number of spotless days.

The situation thus remains unchanged: such a weak solar cycle has not been witnessed in 200 years. It is anticipated with quite high certainty that also the upcoming solar cycle number 25 will be about as weak, because the sun’s polar fields are about as strong as they were during the minimum between cycle number 23 and cycle number 24.

The very weak solar north pole so far has recovered significantly over the past few months since June. What this means now and for the future can be seen graphically at the chart posted here. You can find the latest information at http://www.solen.info/solar.

LaNina is here

An update to our last post here is surely of interest. We were sure of a La Nina by the end of December, and in the meantime, the Australian Bureau of Meteorology officially announced a La Nina in its most recent bulletin. The current model forecast shows continued falling sea surface temperatures along the equatorial eastern Pacific until about February, 2018:

LaNinia
Figure 3: The model for El Nino/La Nina in the Pacific, Source: NOAA. All forecasts point to a moderately strong La Nina event until spring. A powerful La Nina such as the one observed in 2011/12 is currently not projected by the models (which incidentally did not even forecast a La Nina just a few months ago). Enlarged

The impacts on global temperatures lag behind by about 3 to 4 months, and so we should expect a La Nina dip by spring.

Advertisements

Historically Quiet Sun Headed Towards Next Solar Minimum

by Meteorologist Paul Dorian, Vencore, Inc.

Overview

Solar cycle 24 has turned out to be historically weak with the lowest number of sunspots since cycle 14 peaked more than a century ago in 1906 and by some measures, it is the third weakest since regular observations began around 1755. This historically weak solar cycle continues a weakening trend in solar irradiance output since solar cycle 21 peaked around 1980 and the sun is fast-approaching the next solar minimum. The last solar minimum lasted from 2008 to 2009 and the sun was as quiet during that time as it has been since 1978. The sun is likely to enter the next solar minimum phase within three years or so. The sun has been spotless for 26% of the time in 2017 (90 days) and the blank look should increase in frequency over the next couple of years leading into the next solar minimum.

The importance of the sun

The sun is the main driver of all weather and climate on Earth and without it, life on Earth would not exist. The sun’s output energy is not constant, however, as it varies over the course of about 11 years which is the average time period of a solar cycle (a.k.a., sunspot cycle), typically taking about 5 1/2 years to move from the quieter period of solar minimum to the more turbulent solar maximum phase. Over the course of one solar cycle, the sun’s emitted energy varies on average by about 0.1 percent. That may not sound like a lot, but the sun emits a large amount of energy – 1,361 watts per square meter – and fluctuations of just a tenth of a percent can affect Earth.

Sun_spots_count

The accumulated sunspot anomaly from the mean of the previous 23 cycles – 107 months into the cycle. Source

Third weakest solar cycle since 1755

Solar cycle 24 began in 2008 which puts us about nine years into the current cycle. An analysis of the current solar cycle (#24) finds it to be the third weakest since 1755 in terms of accumulated sunspot number anomalies from the mean value at this stage of the solar cycle. The mean value is noted at zero and solar cycle 24 is running 4048 spots less than the mean at the time of the study. In fact, the researchers claim that there have been only two weaker cycles since systematic observations began in 1755 – solar cycle 5 which began in April 1798 and solar cycle 6 which ended in May 1823 – both of these occurred during the extended period of low solar activity known as the “Dalton Minimum”. The seven cycles preceded by solar cycle 24 actually had more sunspots than the mean.

The rest of the Article is HERE. Dorian discusses the decline in solar irradiance over the last 40 years and new Space Station energy sensors.

 

When the sun pulses X-rays, Earth’s ionosphere pulses in sync

The earth’s upper atmosphere has a closer link to the sun than was previously know. When sun burps X-Rays the Ionosphere pulse in sync.

Full article at is at WUWT, but here is the interesting part.

. . .the team of scientists — led by Laura Hayes, a solar physicist who splits her time between NASA Goddard and Trinity College in Dublin, Ireland, and her thesis adviser Peter Gallagher — looked at how the lowest layer of the ionosphere, called the D-region, responded to pulsations in a solar flare.

“This is the region of the ionosphere that affects high-frequency communications and navigation signals,” Hayes said. “Signals travel through the D-region, and changes in the electron density affect whether the signal is absorbed, or degraded.”

The scientists used data from very low frequency, or VLF, radio signals to probe the flare’s effects on the D-region. These were standard communication signals transmitted from Maine and received in Ireland. The denser the ionosphere, the more likely these signals are to run into charged particles along their way from a signal transmitter to its receiver. By monitoring how the VLF signals propagate from one end to the other, scientists can map out changes in electron density.

Pooling together the VLF data and X-ray and extreme ultraviolet observations from GOES and SDO, the team found the D-region’s electron density was pulsing in concert with X-ray pulses on the Sun. They published their results in the Journal of Geophysical Research on Oct. 17, 2017.

“X-rays impinge on the ionosphere and because the amount of X-ray radiation coming in is changing, the amount of ionization in the ionosphere changes too,” said Jack Ireland, a co-author on both studies and Goddard solar physicist. “We’ve seen X-ray oscillations before, but the oscillating ionosphere response hasn’t been detected in the past.”

Hayes and her colleagues used a model to determine just how much the electron density changed during the flare. In response to incoming radiation, they found the density increased as much as 100 times in just 20 minutes during the pulses — an exciting observation for the scientists who didn’t expect oscillating signals in a flare would have such a noticeable effect in the ionosphere. With further study, the team hopes to understand how the ionosphere responds to X-ray oscillations at different timescales, and whether other solar flares induce this response.

“This is an exciting result, showing Earth’s atmosphere is more closely linked to solar X-ray variability than previously thought,” Hayes said. “Now we plan to further explore this dynamic relationship between the Sun and Earth’s atmosphere.”

Both of these studies took advantage of the fact that we are increasingly able to track solar activity and space weather from a number of vantage points. Understanding the space weather that affects us at Earth requires understanding a dynamic system that stretches from the Sun all the way to our upper atmosphere — a system that can only be understood by tapping into a wide range of missions scattered throughout space.

I think we are about to learn the sun has more influence on our weather than we currently understand.  Your thoughts?

New York Times article “so full of nonsense that it is difficult to read”

From Ice Age Now:

Yesterday The New York Times ran an article refuting any ideas that the planet is cooling due to solar activity (or lack thereof). Joseph Kraig provides a wonderful rebuttal.

By Joseph Kraig

This article is so full of nonsense that it is difficult to read.

There is no universal ice melt. Though the article says ice is melting world wide and the oceans are rising, it is simply not true. The oceans are not rising and in places where it was supposed to rise it has actually gotten lower. Greenland saw a faster and larger increase in ice this year than ever recorded. The Glaciers in Alaska and California are both getting larger.

While the sun appears the same day after day it is not. There have been major increases in ultraviolet emissions during the 80’s and 90’s, those emissions are now falling, dramatically.

As long ago as the Maunder Minimum it was known that fewer sun spots cause cooler weather. We are now in a time that is bringing us to a Maunder type of minimum or Grand Minimum.

While it is true that temperatures have been rising (and falling) since the end of the last glaciation we are at the end or what should be the end of the inter-glacial period. We should appreciate any warming we can get.

The amount of CO2 in the atmosphere is growing. Certainly humans contribute to that growth but the percentage of increase due to human industry is minuscule. In fact the total amount of CO2 in the atmosphere is minuscule. It has never been proven that CO2 is a greenhouse gas. There are much more effective greenhouse gases in our atmosphere such as water vapor and Methane.

There are other sciences discoveries that are changing the way scientist think about Global Warming. Who would have thought a couple decades ago that the stars sending their cosmic rays to us could affect our weather but they do, especially in solar minimums.

Ignorance rules our newspapers and much of society. The truth is out there for all to see but those who don’t like the truth lie and know because of our unwillingness to spend a little time reading that we won’t know any better. I refuse to believe the lies of the Mainstream press apparatus.

 

Little Ice Age Explained

By Terry Mejdrich

Sunspots are huge magnetic storms on the sun that can be thousands of miles in diameter. They appear as dark spots because their temperature is slightly cooler than the surrounding surface. They are present when the sun goes through the “active” phase of its approximately 11-year cycle. Currently, the sun is generating tremendous solar storms, an indication of increased intensity of its magnetic field.

Typically, the sun goes from no storms at all to a ferocious period of activity every 11 years. Scientists do not have a clear explanation for why this variability occurs, but likely it is a result of fluctuating convection currents within the sun. Outbursts of superheated plasma from solar storms can cause problems on Earth if the Earth happens to be in the line of fire, interfering with the electronics of satellites and communications. But the sun’s strong magnetic field, of which sunspots are a byproduct, is a vital necessity for protecting life on Earth from cosmic radiation.

In effect, the sun’s magnetic field creates a shield that greatly reduces the amount of harmful radiation reaching the Earth from outer space. But it also, in an indirect way, helps maintain a stable climate, at least according to a recent hypothesis.

The period from about 1650 to 1710 is known at the “Little Ice Age.” Not every year during that period was colder than average, but overall the temperature dropped an average of about two degrees Fahrenheit in the Northern Hemisphere. Two degrees doesn’t sound like much, but it led to crop failures, food shortages and social unrest, particularly in Europe. The Thames River, which flows through London, England, froze over during winter months. Scientists have speculated on reasons why this period of cooling occurred. Some suggested reasons include increased volcanic activity, shifting ocean currents, as well as a dip in the amount of light and heat the sun produced.

Modern measurements, however, have shown that the sun’s light and heat output remain nearly constant with little difference, even during times of increased solar storms. And yet observations by science-minded people of the time indicate that during the Little Ice Age, sunspot activity was almost completely absent. Researchers have wondered if it was mere coincidence that the reduced sunspot activity coincided with a noticeable drop in average temperatures, but if there was a connection, it had eluded them.

Now, a few scientists believe they have found that connection. Their reasoning goes like this: During a protracted solar minimum, which occurred during the Little Ice Age, the sun’s magnetic field becomes weaker (as evidenced by reduced sunspot activity). This allows more cosmic rays to penetrate Earth’s atmosphere. The cosmic rays interact with molecules and atoms in the atmosphere creating microscopic grains of “dust.” These particles attract water vapor, creating tiny droplets of water, which enhances the development of clouds. (Every raindrop forms around a microscopic particle. Without such airborne particulates, there would be no rain.) Increased cloud cover blocks a corresponding amount of solar radiation, thereby decreasing the temperature. This is the scenario now being proposed as the reason for the Little Ice Age.

Further research is required to verify this hypothesis. But it does explain the “coincidence” of a period of virtually no sunspot activity and a period of cooling in the Northern Hemisphere.

The other point of note is the degree to which Earth’s climate changed with just a two-degree reduction in temperature. Presently, average temperatures are rising worldwide, and the consequences are already evident.

http://www.grandrapidsmn.com/opinion/columnists/little-ice-age-explained/article_614dfec8-9a29-11e7-989d-cffaf92de2c7.html

Your opinion is most welcome. Does this theory hold up?

Explosive Volcanism Triggered the Little Ice Age

Headline at Ice Age Now blog:

Volcanism alone can explain the Little Ice Age (LIA), researchers insist. Low sunspot activity is not the culprit.

Precisely dated records of ice-cap growth from Arctic Canada and Iceland show that “Little Ice Age summer cold and ice growth began abruptly between 1275 and 1300 AD, followed by a substantial intensification 1430–1455 AD,” researchers found.These intervals of sudden ice growth coincide with two of the most volcanically perturbed half-centuries of the past millennium, the study shows. “Explosive volcanism produces abrupt summer cooling at these times.”“Our results suggest that the onset of the LIA can be linked to an unusual 50-year-long episode with four large sulfur-rich explosive eruptions, each with global sulfate loading >60 Tg.

”Once the ice age was triggered, cold summers were maintained by sea-ice/ocean feedbacks long after volcanic aerosols were removed. the authors assert. “Large changes in solar irradiance are not required.

Full Post is HERE.
The original research document is HERE.

“Abrupt onset of the Little Ice Age triggered by volcanism and sustained by sea-ice/ocean feedbacks,” published on 31 January 2012

From a comment on the Ice Age Now Post:

From what I see on this page it sounds like the researchers are not aware of what causes the increased volcanic activity and earthquakes in the first place. Namely a very weak solar cycle is directly linked to a substantial increase in volcanic activity. The “experts” are still having a hard time connecting the dots.

I have published the graphic below several times showing an increase in volcanic activity during grand minimums. The question is still open, how does a quiet sun cause an increase in volcanic activity on the earth?

GTEMPS

Your thoughts are most welcome?  What is the solar connection to earthquakes on the planet? It looks like the sudden cool down starts before the plethora of volcanic eruptions on the chart. Does the cooling cause eruptions?

 

Solar minimums may be final piece of puzzle in fall of Western Civilisation

Sam Khoury writing in the Nation

[ooo]

By the 1st century BC, Rome was the most advanced and powerful civilisation on Earth and Romans’ material wealth was skyrocketing. Men and women are increasingly less interested in marriage and no-fault divorce is enacted. Birth rates start to decline below the replacement rate. The citizen soldiers are eventually replaced with professional soldiers who expect compensation and are loyal to the military itself, not the state. As the empire expands in a series of wars of choice it is becomes increasingly multicultural thanks to new citizens from conquered territories. Their loyalty is in question but Rome depends on them as mercenaries to defend the declining state. The government and the military industrial complex replace the private sector as the sole entity responsible for everyone’s well-being. There is moral decay and brutality as Julius Caesar brags about killing one million Gauls. This period could be compared our own world since 1970. By the 400s Rome is being pillaged by Visigoths and Vandals, who ensure it never makes it to the 500s.

However there was something else occurring in the 400s that wasn’t happening in the preceding centuries. Although corruption and immorality were rife, the scientific and historical record shows the climate cooled but, more destructively, it became erratic. Long dry conditions were interrupted by intense deluges. Unseasonal spells of cold weather became the norm. Although solar activity records only date back to the 1600s, these conditions were almost certainly the result of a combination of low solar activity and high volcanic activity – much like the post-medieval warm period that saw solar minimums like the so-called Maunder and Dalton and large volcanic eruptions like the Tambora which, combined with the Dalton, created freezing summers. The result during the 400s was rising food prices, which along with the other factors created deep social dissatisfaction as the economy faltered.

There are proposals on the table to turn the Afghani war over to mercenaries and bring out troops home to a land were middle-class citizens are questioning the role of government and wealth disparity created by robotic and AI technology is growing.  We are becoming more like the Roman Empire, dropping birth rates, fewer marriages, and more debauchery.  Moral decay and fear of the government rampant.  But a significant change in the climate, a highly erratic climate of droughts and floods destroyed the food supply and that was the final blow to the Roman Empire.  Is this or fate?

Enter the monkey in the wrench. After 200 years of healthy solar maximums, solar activity has been plummeting since 2010 and the first solar minimum will hit bottom around 2021. By the 2030s solar physicists now reckon that a grand solar minimum will consume most of the rest of the century. Volcanic activity has also been on the increase and more is expected as eruptions occur most often during solar cycle peaks or at solar minimums. In previous articles published in this newspaper I chronicled increasingly intense and erratic weather patterns that have coincided with the lower solar activity since 2010. The latest include a cold front that descended on the US Midwest in late June dropping temperatures to near freezing, and recent snowfall 200 kilometres south of Moscow in Tarttarastran. Wheat futures immediately rose 6 per cent. At this time the world takes cheap foodstuffs for granted. A change of this reality in the future could shake the global world order to its foundations.

Full Article in HERE.